{ "id": "1803.06412", "version": "v1", "published": "2018-03-16T21:55:46.000Z", "updated": "2018-03-16T21:55:46.000Z", "title": "Symplectic invariance of rational surfaces on Kähler manifolds", "authors": [ "Jason Michael Starr" ], "comment": "21 pages", "categories": [ "math.AG" ], "abstract": "By work of Koll\\'{a}r and Ruan, uniruledness of K\\\"{a}hler manifolds is an invariant of the underlying symplectic manifold. Zhiyu Tian proved that rational connectedness is a symplectic invariant if the dimension is $\\leq 3$. We prove existence of a covering family of rational surfaces assuming positivity of certain gravitational descendants.", "revisions": [ { "version": "v1", "updated": "2018-03-16T21:55:46.000Z" } ], "analyses": { "subjects": [ "14C05", "14N35" ], "keywords": [ "kähler manifolds", "symplectic invariance", "rational surfaces assuming positivity", "zhiyu tian", "symplectic manifold" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable" } } }