{ "id": "1803.05292", "version": "v1", "published": "2018-03-14T14:14:19.000Z", "updated": "2018-03-14T14:14:19.000Z", "title": "Lyapunov exponents and partial hyperbolicity of chain control sets on flag manifolds", "authors": [ "Adriano Da Silva", "Christoph Kawan" ], "categories": [ "math.DS" ], "abstract": "For a right-invariant control system on a flag manifold $\\mathbb{F}_{\\Theta}$ of a real semisimple Lie group, we relate the $\\mathfrak{a}$-Lyapunov exponents to the Lyapunov exponents of the system over regular points. Moreover, we adapt the concept of partial hyperbolicity from the theory of smooth dynamical systems to control-affine systems, and we completely characterize the partially hyperbolic chain control sets on $\\mathbb{F}_{\\Theta}$.", "revisions": [ { "version": "v1", "updated": "2018-03-14T14:14:19.000Z" } ], "analyses": { "subjects": [ "93C10", "93C15", "37C60", "37D30", "22E46" ], "keywords": [ "lyapunov exponents", "partial hyperbolicity", "flag manifold", "real semisimple lie group", "partially hyperbolic chain control sets" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }