{ "id": "1803.05246", "version": "v1", "published": "2018-03-14T12:59:23.000Z", "updated": "2018-03-14T12:59:23.000Z", "title": "On the connectivity threshold for colorings of random graphs and hypergraphs", "authors": [ "Michael Anastos", "Alan Frieze" ], "comment": "15 pages", "categories": [ "math.CO", "cs.DM" ], "abstract": "Let $\\Omega_q=\\Omega_q(H)$ denote the set of proper $[q]$-colorings of the hypergraph $H$. Let $\\Gamma_q$ be the graph with vertex set $\\Omega_q$ and an edge ${\\sigma,\\tau\\}$ where $\\sigma,\\tau$ are colorings iff $h(\\sigma,\\tau)=1$. Here $h(\\sigma,\\tau)$ is the Hamming distance $|\\{v\\in V(H):\\sigma(v)\\neq\\tau(v)\\}|$. We show that if $H=H_{n,m;k},\\,k\\geq 2$, the random $k$-uniform hypergraph with $V=[n]$ and $m=dn/k$ then w.h.p. $\\Gamma_q$ is connected if $d$ is sufficiently large and $q\\gtrsim (d/\\log d)^{1/(k-1)}$.", "revisions": [ { "version": "v1", "updated": "2018-03-14T12:59:23.000Z" } ], "analyses": { "keywords": [ "random graphs", "connectivity threshold", "vertex set", "uniform hypergraph" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }