{ "id": "1803.04727", "version": "v1", "published": "2018-03-13T11:01:18.000Z", "updated": "2018-03-13T11:01:18.000Z", "title": "Characterization of Banach spaces $Y$ satisfying that the pair $ (\\ell_\\infty^4,Y )$ has the Bishop-Phelps-Bollobás property for operators", "authors": [ "María D. Acosta", "José L. Dávila", "Maryam Soleimani-Mourchehkhorti" ], "comment": "28 pages", "categories": [ "math.FA" ], "abstract": "We study the Bishop-Phelps-Bollob\\'as property for operators from $\\ell_\\infty ^4 $ to a Banach space. For this reason we introduce an appropiate geometric property, namely the AHSp-$\\ell_\\infty ^4$. We prove that spaces $Y$satisfying AHSp-$\\ell_\\infty ^4$ are precisely those spaces $Y$ such that $(\\ell_\\infty^4,Y)$ has the Bishop-Phelps-Bollob\\'as property. We also provide classes of Banach spaces satisfying this condition. For instance, finite-dimensional spaces, uniformly convex spaces, $C_0(L)$ and $L_1 (\\mu)$ satisfy AHSp-$\\ell_\\infty ^4 $.", "revisions": [ { "version": "v1", "updated": "2018-03-13T11:01:18.000Z" } ], "analyses": { "subjects": [ "46B20", "47B99" ], "keywords": [ "bishop-phelps-bollobás property", "characterization", "bishop-phelps-bollobas property", "appropiate geometric property", "uniformly convex spaces" ], "note": { "typesetting": "TeX", "pages": 28, "language": "en", "license": "arXiv", "status": "editable" } } }