{ "id": "1803.04613", "version": "v1", "published": "2018-03-13T04:31:00.000Z", "updated": "2018-03-13T04:31:00.000Z", "title": "Apllication BMO type space to parabolic equations of Navier-Stokes type with the Neumann boundary condition", "authors": [ "Yang Minghua", "Zhang Chao" ], "comment": "14 pages", "categories": [ "math.AP" ], "abstract": "Let $\\L$ be a Neumann operator of the form $\\L=-\\Delta_{N}$ acting on $L^2(\\mathbb R^n)$. Let ${BMO}_{\\Delta_{N}}(\\mathbb R^n)$ denote the BMO space on $\\mathbb R^n$ associated to the Neumann operator $\\L$. In this article we will show that a function $f\\in { BMO}_{\\Delta_{N}}(\\mathbb R^n)$ is the trace of the solution of $${\\mathbb L}u=u_{t}+\\L u=0, u(x,0)= f(x),$$ where $u$ satisfies a Carleson-type condition \\begin{eqnarray*} \\sup_{x_B, r_B} r_B^{-n}\\int_0^{r_B^2}\\int_{B(x_B, r_B)} |\\nabla u(x,t)|^2 {dx dt } \\leq C <\\infty, \\end{eqnarray*} for some constant $C>0$. Conversely, this Carleson condition characterizes all the ${\\mathbb L}$-carolic functions whose traces belong to the space ${BMO}_{\\Delta_{N}}(\\mathbb R^n)$. This result extends the analogous characterization founded by E. Fabes and U. Neri in (\\textit{Duke Math. J.} \\textbf{42} (1975), 725-734) for the classical BMO space of John and Nirenberg. Furthermore, based on the characterization of ${BMO}_{\\Delta_{N}}(\\mathbb R^n)$ space mentioned above, we prove global well-posedness for parabolic equations of Navier-Stokes type with the Neumann boundary condition under smallness condition on intial data $u_{0}\\in {{ BMO}_{\\Delta_{N}}^{-1}(\\mathbb R^n)}$, which is motivated by the work of P. Auscher and D. Frey (\\textit{J. Inst. Math. Jussieu} \\textbf{16(5)} (2017), 947-985).", "revisions": [ { "version": "v1", "updated": "2018-03-13T04:31:00.000Z" } ], "analyses": { "subjects": [ "42B35", "42B37", "35J10", "47F05" ], "keywords": [ "apllication bmo type space", "neumann boundary condition", "navier-stokes type", "parabolic equations", "neumann operator" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }