{ "id": "1803.04207", "version": "v1", "published": "2018-03-12T11:46:17.000Z", "updated": "2018-03-12T11:46:17.000Z", "title": "A.s. convergence for infinite colour Pólya urns associated with random walks", "authors": [ "Svante Janson" ], "comment": "30 pages", "categories": [ "math.PR" ], "abstract": "We consider P\\'olya urns with infinitely many colours that are of a random walk type, in two related version. We show that the colour distribution a.s., after rescaling, converges to a normal distribution, assuming only second moments on the offset distribution. This improves results by Bandyopadhyay and Thacker (2014--2017; convergence in probability), and Mailler and Marckert (2017; a.s. convergence assuming exponential moment).", "revisions": [ { "version": "v1", "updated": "2018-03-12T11:46:17.000Z" } ], "analyses": { "subjects": [ "60C05" ], "keywords": [ "infinite colour pólya urns", "random walk type", "convergence assuming exponential moment", "polya urns", "offset distribution" ], "note": { "typesetting": "TeX", "pages": 30, "language": "en", "license": "arXiv", "status": "editable" } } }