{ "id": "1803.04184", "version": "v1", "published": "2018-03-12T11:01:51.000Z", "updated": "2018-03-12T11:01:51.000Z", "title": "On the first-passage area of a L$\\acute{\\text{e}}$vy process", "authors": [ "Mario Abundo", "Sara Furia" ], "comment": "18 pages, 9 figures", "categories": [ "math.PR" ], "abstract": "Let be $X(t)= x - \\mu t + \\sigma B_t - N_t$ a L$\\acute{\\text{e}}$vy process starting from $x >0,$ where $ \\mu \\ge 0, \\ \\sigma \\ge 0, \\ B_t$ is a standard BM, and $N_t$ is a homogeneous Poisson process with intensity $ \\theta >0,$ starting from zero. We study the joint distribution of the first-passage time below zero, $\\tau (x),$ and the first-passage area, $A(x),$ swept out by $X$ till the time $\\tau (x).$ In particular, we establish differential-difference equations with outer conditions for the Laplace transforms of $\\tau(x)$ and $A(x),$ and for their joint moments. In a special case $(\\mu = \\sigma =0),$ we show an algorithm to find recursively the moments $E[\\tau(x)^m A(x)^n],$ for any integers $m$ and $n;$ moreover, we obtain the expected value of the time average of $X$ till the time $\\tau(x).$", "revisions": [ { "version": "v1", "updated": "2018-03-12T11:01:51.000Z" } ], "analyses": { "subjects": [ "60J60", "60H05", "60H10" ], "keywords": [ "vy process", "first-passage area", "special case", "standard bm", "joint moments" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable" } } }