{ "id": "1803.03928", "version": "v1", "published": "2018-03-11T08:45:33.000Z", "updated": "2018-03-11T08:45:33.000Z", "title": "Density of orbits of endomorphisms of commutative linear algebraic groups", "authors": [ "Dragos Ghioca", "Fei Hu" ], "comment": "New York Journal of Mathematics (to appear)", "categories": [ "math.NT", "math.AG" ], "abstract": "We prove a conjecture of Medvedev and Scanlon for endomorphisms of connected commutative linear algebraic groups $G$ defined over an algebraically closed field $\\mathbb{k}$ of characteristic $0$. That is, if $\\Phi\\colon G\\longrightarrow G$ is a dominant endomorphism, we prove that one of the following holds: either there exists a non-constant rational function $f\\in \\mathbb{k}(G)$ preserved by $\\Phi$ (i.e., $f\\circ \\Phi = f$), or there exists a point $x\\in G(\\mathbb{k})$ whose $\\Phi$-orbit is Zariski dense in $G$.", "revisions": [ { "version": "v1", "updated": "2018-03-11T08:45:33.000Z" } ], "analyses": { "subjects": [ "37P15", "20G15", "32H50" ], "keywords": [ "connected commutative linear algebraic groups", "non-constant rational function", "dominant endomorphism", "zariski dense", "characteristic" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }