{ "id": "1803.03791", "version": "v1", "published": "2018-03-10T10:39:50.000Z", "updated": "2018-03-10T10:39:50.000Z", "title": "Shtukas for reductive groups and Langlands correspondence for function fields", "authors": [ "Vincent Lafforgue" ], "comment": "ICM report", "categories": [ "math.AG", "math.RT" ], "abstract": "We discuss recent developments in the Langlands program for function fields, and in the geometric Langlands program. In particular we explain a canonical decomposition of the space of cuspidal automorphic forms for any reductive group G over a function field, indexed by global Langlands parameters. The proof uses the cohomology of G-shtukas with multiple modifications and the geometric Satake equivalence.", "revisions": [ { "version": "v1", "updated": "2018-03-10T10:39:50.000Z" } ], "analyses": { "subjects": [ "14G35", "14H60", "11F70" ], "keywords": [ "function field", "reductive group", "langlands correspondence", "cuspidal automorphic forms", "geometric langlands program" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }