{ "id": "1803.03492", "version": "v1", "published": "2018-03-09T12:51:31.000Z", "updated": "2018-03-09T12:51:31.000Z", "title": "Existence and uniqueness of ground states for $p$ - Choquard model in 3D", "authors": [ "Vladimir Georgiev", "Mirko Tarulli", "George Venkov" ], "comment": "13", "categories": [ "math.AP" ], "abstract": "We study the $p$-Choquard equation in 3-dimensional case and establish existence and uniqueness of ground states for the corresponding Weinstein functional. For proving the uniqueness of ground states, we use the radial symmetry to transform the equation into an ordinary differential system, and applying the Pohozaev identities and Gronwall lemma we show that any two Weinstein minimizers coincide.", "revisions": [ { "version": "v1", "updated": "2018-03-09T12:51:31.000Z" } ], "analyses": { "subjects": [ "35Q51", "35Q40", "35Q55", "49S05" ], "keywords": [ "ground states", "choquard model", "uniqueness", "weinstein minimizers coincide", "ordinary differential system" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }