{ "id": "1803.03130", "version": "v1", "published": "2018-03-08T14:50:25.000Z", "updated": "2018-03-08T14:50:25.000Z", "title": "From Cantor to Semi-hyperbolic Parameter along External Rays", "authors": [ "Yi-Chiuan Chen", "Tomoki Kawahira" ], "comment": "34 pages, 5 figures", "categories": [ "math.DS", "math.CV" ], "abstract": "For the quadratic family $f_{c}(z) = z^2+c$ with $c$ in the exterior of the Mandelbrot set, it is known that every point in the Julia set moves holomorphically. Let $\\hat{c}$ be a semi-hyperbolic parameter in the boundary of the Mandelbrot set. In this paper we prove that for each $z = z(c)$ in the Julia set, the derivative $dz(c)/dc$ is uniformly $O(1/\\sqrt{|c-\\hat{c}|})$ when $c$ belongs to a parameter ray that lands on $\\hat{c}$. We also characterize the degeneration of the dynamics along the parameter ray.", "revisions": [ { "version": "v1", "updated": "2018-03-08T14:50:25.000Z" } ], "analyses": { "subjects": [ "37F45", "37F99" ], "keywords": [ "semi-hyperbolic parameter", "external rays", "parameter ray", "mandelbrot set", "julia set moves" ], "note": { "typesetting": "TeX", "pages": 34, "language": "en", "license": "arXiv", "status": "editable" } } }