{ "id": "1803.02982", "version": "v1", "published": "2018-03-08T06:46:05.000Z", "updated": "2018-03-08T06:46:05.000Z", "title": "Beyond perturbation 2: asymptotics and Beilinson-Drinfeld Grassmannians in differential geometry", "authors": [ "Dennis Borisov", "Kobi Kremnizer" ], "categories": [ "math.DG", "math.RT" ], "abstract": "We prove that for any k greater or equal to 2, given a smooth compact k-dimensional manifold and a multiplicative k-1-gerbe on a Lie group, together with an integrable connection, there is a line bundle on the corresponding Beilinson-Drinfeld Grassmannian having the factorization property.", "revisions": [ { "version": "v1", "updated": "2018-03-08T06:46:05.000Z" } ], "analyses": { "subjects": [ "22E57", "22E67", "53C08", "57T10", "58A03", "58K55", "81R10" ], "keywords": [ "differential geometry", "perturbation", "smooth compact k-dimensional manifold", "asymptotics", "factorization property" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }