{ "id": "1803.02440", "version": "v1", "published": "2018-03-06T22:15:10.000Z", "updated": "2018-03-06T22:15:10.000Z", "title": "A shift map with a discontinuous entropy function", "authors": [ "Christian Wolf" ], "categories": [ "math.DS" ], "abstract": "Let $f:X\\to X$ be a continuous map on a compact metric space with finite topological entropy. Further, we assume that the entropy map $\\mu\\mapsto h_\\mu(f)$ is upper semi-continuous. It is well-known that this implies the continuity of the localized entropy function of a given continuous potential $\\phi:X\\to R$. In this note we show that this result does not carry over to the case of higher-dimensional potentials $\\Phi:X\\to R^m$. Namely, we construct for a shift map $f$ a $2$-dimensional Lipschitz continuous potential $\\Phi$ with a discontinuous localized entropy function.", "revisions": [ { "version": "v1", "updated": "2018-03-06T22:15:10.000Z" } ], "analyses": { "subjects": [ "37A35", "37B10", "37C40" ], "keywords": [ "discontinuous entropy function", "shift map", "dimensional lipschitz continuous potential", "compact metric space", "discontinuous localized entropy function" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }