{ "id": "1803.02377", "version": "v1", "published": "2018-03-06T19:01:04.000Z", "updated": "2018-03-06T19:01:04.000Z", "title": "The equivariant volumes of the permutahedron", "authors": [ "Federico Ardila", "Anna Schindler", "Andrés R. Vindas-Meléndez" ], "comment": "13 pages, 2 figures", "categories": [ "math.CO" ], "abstract": "We consider the action of the symmetric group $S_n$ on the permutahedron $\\Pi_n$. We prove that if $\\sigma$ is a permutation of $S_n$ which has $m$ cycles of lengths $l_1, \\ldots, l_m$, then the subpolytope of $\\Pi_n$ fixed by $\\sigma$ has normalized volume $n^{m-2} \\gcd(l_1, \\ldots, l_m)$.", "revisions": [ { "version": "v1", "updated": "2018-03-06T19:01:04.000Z" } ], "analyses": { "subjects": [ "05E18", "52A38", "52B15" ], "keywords": [ "equivariant volumes", "permutahedron", "symmetric group" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }