{ "id": "1803.01988", "version": "v1", "published": "2018-03-06T02:23:37.000Z", "updated": "2018-03-06T02:23:37.000Z", "title": "Global weak solutions for the three-dimensional chemotaxis-Navier-Stokes system with slow $p$-Laplacian diffusion", "authors": [ "Weirun Tao", "Yuxiang Li" ], "comment": "22pages", "categories": [ "math.AP" ], "abstract": "This paper investigates an incompressible chemotaxis-Navier-Stokes system with slow $p$-Laplacian diffusion \\begin{eqnarray} \\left\\{\\begin{array}{lll} n_t+u\\cdot\\nabla n=\\nabla\\cdot(|\\nabla n|^{p-2}\\nabla n)-\\nabla\\cdot(n\\chi(c)\\nabla c),& x\\in\\Omega,\\ t>0, c_t+u\\cdot\\nabla c=\\Delta c-nf(c),& x\\in\\Omega,\\ t>0, u_t+(u\\cdot\\nabla) u=\\Delta u+\\nabla P+n\\nabla\\Phi,& x\\in\\Omega,\\ t>0, \\nabla\\cdot u=0,& x\\in\\Omega,\\ t>0 \\end{array}\\right. \\end{eqnarray} under homogeneous boundary conditions of Neumann type for $n$ and $c$, and of Dirichlet type for $u$ in a bounded convex domain $\\Omega\\subset \\mathbb{R}^3$ with smooth boundary. Here, $\\Phi\\in W^{1,\\infty}(\\Omega)$, $0<\\chi\\in C^2([0,\\infty))$ and $0\\leq f\\in C^1([0,\\infty))$ with $f(0)=0$. It is proved that if $p>\\frac{32}{15}$ and under appropriate structural assumptions on $f$ and $\\chi$, for all sufficiently smooth initial data $(n_0,c_0,u_0)$ the model possesses at least one global weak solution.", "revisions": [ { "version": "v1", "updated": "2018-03-06T02:23:37.000Z" } ], "analyses": { "subjects": [ "35Q92", "35K55", "35Q35", "76S05", "92C17" ], "keywords": [ "global weak solution", "three-dimensional chemotaxis-navier-stokes system", "laplacian diffusion", "sufficiently smooth initial data", "appropriate structural assumptions" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable" } } }