{ "id": "1803.01987", "version": "v1", "published": "2018-03-06T02:21:16.000Z", "updated": "2018-03-06T02:21:16.000Z", "title": "Odoni's conjecture for number fields", "authors": [ "Robert L. Benedetto", "Jamie Juul" ], "comment": "15 pages, 1 figure", "categories": [ "math.NT", "math.DS" ], "abstract": "Let $K$ be a number field, and let $d\\geq 2$. A conjecture of Odoni (stated more generally for characteristic zero Hilbertian fields $K$) posits that there is a monic polynomial $f\\in K[x]$ of degree $d$, and a point $x_0\\in K$, such that for every $n\\geq 0$, the so-called arboreal Galois group $Gal(K(f^{-n}(x_0))/K)$ is an $n$-fold wreath product of the symmetric group $S_d$. In this paper, we prove Odoni's conjecture when $d$ is even and $K$ is an arbitrary number field, and also when both $d$ and $[K:Q]$ are odd.", "revisions": [ { "version": "v1", "updated": "2018-03-06T02:21:16.000Z" } ], "analyses": { "subjects": [ "37P05", "11G50" ], "keywords": [ "odonis conjecture", "characteristic zero hilbertian fields", "arbitrary number field", "arboreal galois group", "fold wreath product" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }