{ "id": "1803.00856", "version": "v1", "published": "2018-03-02T14:13:30.000Z", "updated": "2018-03-02T14:13:30.000Z", "title": "Embedded loops in the hyperbolic plane with prescribed, almost constant curvature", "authors": [ "Roberta Musina", "Fabio Zuddas" ], "comment": "24 pages", "categories": [ "math.DG" ], "abstract": "Given a constant $k>1$ and a real valued function $K$ on the hyperbolic plane $\\mathbb H^2$, we study the problem of finding, for any $\\epsilon\\approx 0$, a closed and embedded curve $u^\\epsilon $ in $\\mathbb H^2$ having geodesic curvature $k+\\epsilon K(u^\\epsilon)$ at each point.", "revisions": [ { "version": "v1", "updated": "2018-03-02T14:13:30.000Z" } ], "analyses": { "keywords": [ "hyperbolic plane", "constant curvature", "embedded loops", "geodesic curvature" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable" } } }