{ "id": "1803.00793", "version": "v1", "published": "2018-03-02T10:26:56.000Z", "updated": "2018-03-02T10:26:56.000Z", "title": "Equivalence of some subcritical properties in continuum percolation", "authors": [ "Jean-Baptiste Gouéré", "Marie Théret" ], "categories": [ "math.PR" ], "abstract": "We consider the Boolean model on $\\R^d$. We prove some equivalences between subcritical percolation properties. Let us introduce some notations to state one of these equivalences. Let $C$ denote the connected component of the origin in the Boolean model. Let $|C|$ denotes its volume. Let $\\ell$ denote the maximal length of a chain of random balls from the origin. Under optimal integrability conditions on the radii, we prove that $E(|C|)$ is finite if and only if there exists $A,B >0$ such that $\\P(\\ell \\ge n) \\le Ae^{-Bn}$ for all $n \\ge 1$.", "revisions": [ { "version": "v1", "updated": "2018-03-02T10:26:56.000Z" } ], "analyses": { "keywords": [ "continuum percolation", "subcritical properties", "equivalence", "boolean model", "optimal integrability conditions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }