{ "id": "1803.00542", "version": "v1", "published": "2018-03-01T18:23:32.000Z", "updated": "2018-03-01T18:23:32.000Z", "title": "The Burgess bound via a trivial delta method", "authors": [ "Keshav Aggarwal", "Roman Holowinsky", "Yongxiao Lin", "Qingfeng Sun" ], "comment": "13 pages; comments welcome", "categories": [ "math.NT" ], "abstract": "Recently, Munshi established the following Burgess bounds ${L(1/2,g\\otimes \\chi)\\ll_{g,\\varepsilon} M^{1/2-1/8+\\varepsilon}}$ and $L(1/2,\\chi)\\ll_{\\varepsilon} M^{1/4-1/16+\\varepsilon}$, for any given $\\varepsilon>0$, where $g$ is a fixed Hecke cusp form for $\\rm SL(2,\\mathbb{Z})$, and $\\chi$ is a primitive Dirichlet character modulo a prime $M$. The key to his proof was his novel $\\rm GL(2)$ delta method. In this paper, we give a new proof of these Burgess bounds by using a trivial delta method.", "revisions": [ { "version": "v1", "updated": "2018-03-01T18:23:32.000Z" } ], "analyses": { "subjects": [ "11F66" ], "keywords": [ "trivial delta method", "burgess bound", "fixed hecke cusp form", "primitive dirichlet character modulo" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }