{ "id": "1803.00240", "version": "v1", "published": "2018-03-01T08:04:51.000Z", "updated": "2018-03-01T08:04:51.000Z", "title": "On a new generalization of metric spaces", "authors": [ "Mohamed Jleli", "Bessem Samet" ], "categories": [ "math.GN" ], "abstract": "In this paper, we introduce the $\\mathcal{F}$-metric space concept, which generalizes the metric space notion. We define a natural topology $\\tau_{\\mathcal{F}}$ in such spaces and we study their topological properties. Moreover, we establish a new version of the Banach contraction principle in the setting of $\\mathcal{F}$-metric spaces. Several examples are presented to illustrate our study.", "revisions": [ { "version": "v1", "updated": "2018-03-01T08:04:51.000Z" } ], "analyses": { "subjects": [ "54E50", "54A20", "47H10" ], "keywords": [ "generalization", "metric space concept", "banach contraction principle", "metric space notion", "natural topology" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }