{ "id": "1802.09856", "version": "v1", "published": "2018-02-27T12:40:16.000Z", "updated": "2018-02-27T12:40:16.000Z", "title": "On (shape-)Wilf-equivalence for words", "authors": [ "Ting Guo", "Christian Krattenthaler", "Yi Zhang" ], "comment": "AmS-LaTeX, 13 pages", "categories": [ "math.CO" ], "abstract": "Stankova and West showed that for any non-negative integer $s$ and any permutation $\\gamma$ of $\\{4,5,\\dots,s+3\\}$ there are as many permutations that avoid $231\\gamma$ as there are that avoid $312\\gamma$. We extend this result to the setting of words.", "revisions": [ { "version": "v1", "updated": "2018-02-27T12:40:16.000Z" } ], "analyses": { "subjects": [ "05A15", "05A17", "05A19", "05E10" ], "keywords": [ "wilf-equivalence", "permutation" ], "note": { "typesetting": "LaTeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }