{ "id": "1802.08661", "version": "v1", "published": "2018-02-23T18:04:54.000Z", "updated": "2018-02-23T18:04:54.000Z", "title": "The modular Cauchy kernel for the Hilbert modular surface", "authors": [ "Nina Sakharova" ], "categories": [ "math.AG" ], "abstract": "In this paper we construct the modular Cauchy kernel on the Hilbert modular surface $\\Xi_{\\mathrm{Hil},m}(z)(z_2-\\bar{z_2})$, i.e. the function of two variables, $(z_1, z_2) \\in \\mathbb{H} \\times \\mathbb{H}$, which is invariant under the action of the Hilbert modular group, with the first order pole on the Hirzebruch-Zagier divisors. The derivative of this function with respect to $\\bar{z_2}$ is the function $\\omega_m (z_1, z_2)$ introduced by Don Zagier in \\cite{Za1}. We consider the question of the convergence and the Fourier expansion of the kernel function. The paper generalizes the first part of the results obtained in the preprint \\cite{Sa}", "revisions": [ { "version": "v1", "updated": "2018-02-23T18:04:54.000Z" } ], "analyses": { "keywords": [ "hilbert modular surface", "modular cauchy kernel", "hilbert modular group", "first order pole", "hirzebruch-zagier divisors" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }