{ "id": "1802.08550", "version": "v1", "published": "2018-02-18T21:51:12.000Z", "updated": "2018-02-18T21:51:12.000Z", "title": "Morrey spaces related to certain nonnegative potentials and fractional integrals on the Heisenberg groups", "authors": [ "Hua Wang" ], "comment": "22 pages. arXiv admin note: text overlap with arXiv:1802.02481", "categories": [ "math.CA" ], "abstract": "Let $\\mathcal L=-\\Delta_{\\mathbb H^n}+V$ be a Schr\\\"odinger operator on the Heisenberg group $\\mathbb H^n$, where $\\Delta_{\\mathbb H^n}$ is the sub-Laplacian on $\\mathbb H^n$ and the nonnegative potential $V$ belongs to the reverse H\\\"older class $RH_s$ with $s\\geq Q/2$. Here $Q=2n+2$ is the homogeneous dimension of $\\mathbb H^n$. For given $\\alpha\\in(0,Q)$, the fractional integrals associated to the Schr\\\"odinger operator $\\mathcal L$ is defined by $\\mathcal I_{\\alpha}={\\mathcal L}^{-{\\alpha}/2}$. In this article, we first introduce the Morrey space $L^{p,\\kappa}_{\\rho,\\infty}(\\mathbb H^n)$ and weak Morrey space $WL^{p,\\kappa}_{\\rho,\\infty}(\\mathbb H^n)$ related to the nonnegative potential $V$. Then we establish the boundedness of fractional integrals ${\\mathcal L}^{-{\\alpha}/2}$ on these new spaces. Furthermore, in order to deal with certain extreme cases, we also introduce the spaces $\\mathrm{BMO}_{\\rho,\\infty}(\\mathbb H^n)$ and $\\mathcal{C}^{\\beta}_{\\rho,\\infty}(\\mathbb H^n)$ with exponent $\\beta\\in(0,1]$.", "revisions": [ { "version": "v1", "updated": "2018-02-18T21:51:12.000Z" } ], "analyses": { "subjects": [ "42B20", "35J10", "22E25", "22E30" ], "keywords": [ "fractional integrals", "nonnegative potential", "heisenberg group", "weak morrey space", "extreme cases" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable" } } }