{ "id": "1802.07986", "version": "v1", "published": "2018-02-22T11:36:06.000Z", "updated": "2018-02-22T11:36:06.000Z", "title": "A Version of $κ$-Miller Forcing", "authors": [ "Heike Mildenberger", "Saharon Shelah" ], "categories": [ "math.LO" ], "abstract": "Let $\\kappa$ be a regular uncountable cardinal such that $2^{<\\kappa} = \\kappa$ or just $2^{(\\kappa^{<\\kappa})} = 2^\\kappa$ and there is a $\\kappa$-mad family of size $2^\\kappa$. We show under these assumptions the forcing order $\\kappa$-Miller with club many splitting nodes collapses $2^\\kappa$ to $\\omega$ and adds a $\\kappa$-Cohen real.", "revisions": [ { "version": "v1", "updated": "2018-02-22T11:36:06.000Z" } ], "analyses": { "subjects": [ "03E05", "03E17", "03E35" ], "keywords": [ "miller forcing", "regular uncountable cardinal", "splitting nodes collapses", "cohen real", "assumptions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }