{ "id": "1802.07547", "version": "v1", "published": "2018-02-21T12:55:35.000Z", "updated": "2018-02-21T12:55:35.000Z", "title": "On some realizations of globally exceptional $\\varmathbb{Z}_3 \\times \\varmathbb{Z}_3 $-symmetric spaces $G/K$, $G=G_2, F_4, E_6$, Part I", "authors": [ "Toshikazu Miyashita" ], "comment": "44 pages", "categories": [ "math.DG" ], "abstract": "R. Lutz introduced the notion of $\\varGamma$-symmetric space as a generalization of the classical notion of symmetric space in 1981, where $\\varGamma$ is a finite abelian group. In the present article, as $\\varGamma=\\varmathbb{Z}_3 \\times \\varmathbb{Z}_3$, we give the automorphisms $\\tilde{\\sigma}_3, \\tilde{\\tau}_3$ of order $3$ on the connected compact exceptional Lie groups $G=G_2, F_4,E_6$ %and construct $\\varGamma=\\varmathbb{Z}_3 \\times \\varmathbb{Z}_3$ as the elements of order $3$ in $\\Aut(G)$, explicitly and determine the structure of the group $G^{\\sigma_3} \\cap G^{\\tau_3}$ using homomorphism theorem elementary. These amount to some global realizations of exceptional $\\varmathbb{Z}_3 \\times \\varmathbb{Z}_3$-symmetric spaces $G/K$, where $(G^{\\sigma_3} \\cap G^{\\tau_3})_0 \\subseteq K \\subseteq G^{\\sigma_3} \\cap G^{\\tau_3}$.", "revisions": [ { "version": "v1", "updated": "2018-02-21T12:55:35.000Z" } ], "analyses": { "subjects": [ "53C30", "53C35", "17B40" ], "keywords": [ "symmetric space", "globally exceptional", "connected compact exceptional lie groups", "finite abelian group", "homomorphism theorem elementary" ], "note": { "typesetting": "TeX", "pages": 44, "language": "en", "license": "arXiv", "status": "editable" } } }