{ "id": "1802.07514", "version": "v1", "published": "2018-02-21T11:09:25.000Z", "updated": "2018-02-21T11:09:25.000Z", "title": "On some properties of the functors ${\\mathcal F}^G_P$ from Lie algebra to locally analytic representations", "authors": [ "Sascha Orlik", "Matthias Strauch" ], "comment": "36 pages", "categories": [ "math.RT", "math.NT" ], "abstract": "For a split reductive group $G$ over a finite extension $L$ of ${\\mathbb Q}_p$, and a parabolic subgroup $P \\subset G$ we examine functorial properties of the functors ${\\mathcal F}^G_P$ introduced in \\cite{OS2,OS3}. We discuss the aspects of faithfulness, projective and injective objects, Ext-groups and some kind of adjunction formulas. Here we apply the (naive) Jacquet functor and a more detailed study of the category ${\\mathcal O}^B$ introduced in \\cite{OS3}.", "revisions": [ { "version": "v1", "updated": "2018-02-21T11:09:25.000Z" } ], "analyses": { "subjects": [ "22E50", "20G05", "20G25", "17B35", "11S37", "22E35", "17B15" ], "keywords": [ "locally analytic representations", "lie algebra", "finite extension", "parabolic subgroup", "functorial properties" ], "note": { "typesetting": "TeX", "pages": 36, "language": "en", "license": "arXiv", "status": "editable" } } }