{ "id": "1802.07485", "version": "v1", "published": "2018-02-21T09:56:49.000Z", "updated": "2018-02-21T09:56:49.000Z", "title": "Perfect powers that are sums of squares in a three term arithmetic progression", "authors": [ "Angelos Koutsianas", "Vandita Patel" ], "comment": "6 pages", "categories": [ "math.NT" ], "abstract": "We determine primitive solutions to the equation $(x-r)^2 + x^2 + (x+r)^2 = y^n$ for $1 \\le r \\le 5,000$, making use of a factorization argument and the Primitive Divisors Theorem due to Bilu, Hanrot and Voutier.", "revisions": [ { "version": "v1", "updated": "2018-02-21T09:56:49.000Z" } ], "analyses": { "keywords": [ "term arithmetic progression", "perfect powers", "determine primitive solutions", "factorization argument", "primitive divisors theorem" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable" } } }