{ "id": "1802.07352", "version": "v1", "published": "2018-02-20T21:57:17.000Z", "updated": "2018-02-20T21:57:17.000Z", "title": "Crystal graphs for shifted tableaux", "authors": [ "Sami Assaf", "Ezgi Kantarcı Oğuz" ], "comment": "12 pages, 11 figures, to appear in FPSAC 2018 conference proceedings", "categories": [ "math.CO", "math.RT" ], "abstract": "We define crystal operators on semistandard shifted tableaux, giving a new proof that Schur $P$-functions are Schur positive. We define a queer crystal operator to construct a connected queer crystal on semistandard shifted tableaux of a given shape, providing a new proof that products of Schur $P$-functions are Schur $P$-positive. We also give a rectification map from shifted tableaux to Young tableaux that commutes with the crystal operators and provides a dual algorithm to shifted insertion.", "revisions": [ { "version": "v1", "updated": "2018-02-20T21:57:17.000Z" } ], "analyses": { "keywords": [ "crystal graphs", "semistandard shifted tableaux", "define crystal operators", "queer crystal operator", "connected queer crystal" ], "tags": [ "conference paper" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }