{ "id": "1802.06637", "version": "v1", "published": "2018-02-19T14:13:49.000Z", "updated": "2018-02-19T14:13:49.000Z", "title": "On the (in)efficiency of MFG equilibria", "authors": [ "Pierre Cardaliaguet", "Catherine Rainer" ], "categories": [ "math.OC" ], "abstract": "Mean field games (MFG) are dynamic games with infinitely many infinitesimal agents. In this context, we study the efficiency of Nash MFG equilibria: Namely, we compare the social cost of a MFG equilibrium with the minimal cost a global planner can achieve. We find a structure condition on the game under which there exists efficient MFG equilibria and, in case this condition is not fulfilled, quantify how inefficient MFG equilibria are.", "revisions": [ { "version": "v1", "updated": "2018-02-19T14:13:49.000Z" } ], "analyses": { "keywords": [ "mfg equilibrium", "efficiency", "mean field games", "inefficient mfg equilibria", "nash mfg equilibria" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }