{ "id": "1802.06343", "version": "v1", "published": "2018-02-18T07:37:21.000Z", "updated": "2018-02-18T07:37:21.000Z", "title": "On an infinite limit of BGG categories O", "authors": [ "Kevin Coulembier", "Ivan Penkov" ], "categories": [ "math.RT" ], "abstract": "We study a version of the BGG category O for Dynkin Borel subalgebras of root-reductive Lie algebras, such as g=gl(infinity). We prove results about extension fullness and compute the higher extensions of simple modules by Verma modules. We also show that the category is Ringel self-dual and initiate the study of Koszul duality. An important tool in obtaining these results is an equivalence we establish between appropriate Serre subquotients of category O for g and category O for finite dimensional reductive subalgebras of g.", "revisions": [ { "version": "v1", "updated": "2018-02-18T07:37:21.000Z" } ], "analyses": { "keywords": [ "bgg category", "infinite limit", "finite dimensional reductive subalgebras", "dynkin borel subalgebras", "appropriate serre subquotients" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }