{ "id": "1802.04935", "version": "v1", "published": "2018-02-14T02:44:18.000Z", "updated": "2018-02-14T02:44:18.000Z", "title": "Multiplicity of closed characteristics on $P$-symmetric compact convex hypersurfaces in $\\mathbb{R}^{2n}$", "authors": [ "Lei Liu", "Li Wu" ], "comment": "15 pages with 0 figures", "categories": [ "math.DS" ], "abstract": "In this paper, we provide new index estimations and prove that for any $P$-symmetric compact convex hypersurface $\\Sigma$ in $\\mathbb{R}^{2n}$, i.e. $x\\in\\Sigma$ implies $Px\\in\\Sigma$ with a certain orthogonal symplectic matrix $P$, there are at least $[\\frac{3n}{4}]$ closed characteristics on $\\Sigma$. Provided there exist an integer $m>2$ such that $$P^m=I_{2n},$$ and there exist only one $\\theta\\in(0,\\pi]$ s.t. $e^{\\sqrt{-1}\\theta}\\in\\sigma(P)$ which satisfies $$S^+_P(e^{\\sqrt{-1}\\theta})=S^-_P(e^{\\sqrt{-1}\\theta}),$$ where $S^{\\pm}_P(\\omega)$ are the splitting numbers of $P$ at $\\omega\\in \\mathbf{U}:=\\{z\\in\\mathbb{C},|z|=1\\}$.", "revisions": [ { "version": "v1", "updated": "2018-02-14T02:44:18.000Z" } ], "analyses": { "subjects": [ "58E05", "37J45", "34C25", "37C75" ], "keywords": [ "symmetric compact convex hypersurface", "closed characteristics", "multiplicity", "orthogonal symplectic matrix", "index estimations" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }