{ "id": "1802.04569", "version": "v1", "published": "2018-02-13T11:31:34.000Z", "updated": "2018-02-13T11:31:34.000Z", "title": "The Cesàro operator on duals of power series spaces of infinite type", "authors": [ "Angela A. Albanese", "José Bonet", "Werner \\", "J. Ricker" ], "categories": [ "math.FA" ], "abstract": "A detailed investigation is made of the continuity, spectrum and mean ergodic properties of the Ces\\`aro operator $C$ when acting on the strong duals of power series spaces of infinite type. There is a dramatic difference in the nature of the spectrum of $C$ depending on whether or not the strong dual space (which is always Schwartz) is nuclear.", "revisions": [ { "version": "v1", "updated": "2018-02-13T11:31:34.000Z" } ], "analyses": { "subjects": [ "47A10", "47B37", "46A04", "46A11", "46A13", "46A45", "47A35" ], "keywords": [ "power series spaces", "infinite type", "cesàro operator", "strong dual space", "mean ergodic properties" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }