{ "id": "1802.03813", "version": "v1", "published": "2018-02-11T20:44:07.000Z", "updated": "2018-02-11T20:44:07.000Z", "title": "Universality for 1d random band matrices: sigma-model approximation", "authors": [ "Mariya Shcherbina", "Tatyana Shcherbina" ], "comment": "38 pp", "categories": [ "math-ph", "math.MP" ], "abstract": "The paper continues the development of the rigorous supersymmetric transfer matrix approach to the random band matrices started in J Stat Phys 164:1233 -- 1260, 2016; Commun Math Phys 351:1009 -- 1044, 2017. We consider random Hermitian block band matrices consisting of $W\\times W$ random Gaussian blocks (parametrized by $j,k \\in\\Lambda=[1,n]^d\\cap \\mathbb{Z}^d$) with a fixed entry's variance $J_{jk}=\\delta_{j,k}W^{-1}+\\beta\\Delta_{j,k}W^{-2}$, $\\beta>0$ in each block. Taking the limit $W\\to\\infty$ with fixed $n$ and $\\beta$, we derive the sigma-model approximation of the second correlation function similar to Efetov's one. Then, considering the limit $\\beta, n\\to\\infty$, we prove that in the dimension $d=1$ the behaviour of the sigma-model approximation in the bulk of the spectrum, as $\\beta\\gg n$, is determined by the classical Wigner -- Dyson statistics.", "revisions": [ { "version": "v1", "updated": "2018-02-11T20:44:07.000Z" } ], "analyses": { "keywords": [ "1d random band matrices", "sigma-model approximation", "supersymmetric transfer matrix approach", "block band matrices consisting", "random hermitian block band matrices" ], "note": { "typesetting": "TeX", "pages": 38, "language": "en", "license": "arXiv", "status": "editable" } } }