{ "id": "1802.03496", "version": "v1", "published": "2018-02-10T01:50:55.000Z", "updated": "2018-02-10T01:50:55.000Z", "title": "On the maximum of discretely sampled fractional Brownian motion with small Hurst parameter", "authors": [ "Konstantin Borovkov", "Mikhail Zhitlukhin" ], "comment": "9 pages, 1 figure", "categories": [ "math.PR" ], "abstract": "We show that the distribution of the maximum of the fractional Brownian motion $B^H$ with Hurst parameter $H\\to 0$ over an $n$-point set $\\tau \\subset [0,1]$ can be approximated by the normal law with mean $\\sqrt{\\ln n}$ and variance $1/2$ provided that $n\\to \\infty$ slowly enough and the points in $\\tau$ are not too close to each other.", "revisions": [ { "version": "v1", "updated": "2018-02-10T01:50:55.000Z" } ], "analyses": { "subjects": [ "60G22", "60G15", "60E15", "60F05" ], "keywords": [ "discretely sampled fractional brownian motion", "small hurst parameter", "point set", "normal law", "distribution" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }