{ "id": "1802.03432", "version": "v1", "published": "2018-02-09T19:55:15.000Z", "updated": "2018-02-09T19:55:15.000Z", "title": "Asymptotic analysis and energy quantization for the Lane-Emden problem in dimension two", "authors": [ "Francesca De Marchis", "Massimo Grossi", "Isabella Ianni", "Filomena Pacella" ], "categories": [ "math.AP" ], "abstract": "We complete the study of the asymptotic behavior, as $p\\rightarrow +\\infty$, of the positive solutions to \\[ \\left\\{\\begin{array}{lr}-\\Delta u= u^p & \\mbox{in}\\Omega\\\\ u=0 &\\mbox{on}\\partial \\Omega \\end{array}\\right. \\] when $\\Omega$ is any smooth bounded domain in $\\mathbb R^2$, started in [4]. In particular we show quantization of the energy to multiples of $8\\pi e$ and prove convergence to $\\sqrt{e}$ of the $L^{\\infty}$-norm, thus confirming the conjecture made in [4].", "revisions": [ { "version": "v1", "updated": "2018-02-09T19:55:15.000Z" } ], "analyses": { "keywords": [ "energy quantization", "lane-emden problem", "asymptotic analysis", "smooth bounded domain", "asymptotic behavior" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }