{ "id": "1802.02857", "version": "v1", "published": "2018-02-08T13:59:03.000Z", "updated": "2018-02-08T13:59:03.000Z", "title": "Dimension dependence of factorization problems: Hardy spaces and $SL_n^\\infty$", "authors": [ "Richard Lechner" ], "comment": "12 pages", "categories": [ "math.FA" ], "abstract": "Given $1 \\leq p < \\infty$, let $W_n$ denote the finite-dimensional dyadic Hardy space $H_n^p$, its dual or $SL_n^\\infty$. We prove the following quantitative result: The identity operator on $W_n$ factors through any operator $T : W_N\\to W_N$ which has large diagonal with respect to the Haar system, where $N$ depends \\emph{linearly} on $n$.", "revisions": [ { "version": "v1", "updated": "2018-02-08T13:59:03.000Z" } ], "analyses": { "subjects": [ "46B07", "30H10", "46B25", "60G46" ], "keywords": [ "factorization problems", "dimension dependence", "finite-dimensional dyadic hardy space", "identity operator", "large diagonal" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }