{ "id": "1802.02146", "version": "v1", "published": "2018-02-06T15:29:51.000Z", "updated": "2018-02-06T15:29:51.000Z", "title": "On the irregularity of uniform hypergraphs", "authors": [ "Lele Liu", "Liying Kang", "Erfang Shan" ], "comment": "14 pages", "categories": [ "math.CO" ], "abstract": "Let $H$ be an $r$-uniform hypergraph on $n$ vertices and $m$ edges, and let $d_i$ be the degree of $i\\in V(H)$. Denote by $\\varepsilon(H)$ the difference of the spectral radius of $H$ and the average degree of $H$. Also, denote \\[ s(H)=\\sum_{i\\in V(H)}\\left|d_i-\\frac{rm}{n}\\right|,~ v(H)=\\frac{1}{n}\\sum_{i\\in V(H)}d_i^{\\frac{r}{r-1}}-\\left(\\frac{rm}{n}\\right)^{\\frac{r}{r-1}}. \\] In this paper, we investigate the irregularity of $r$-uniform hypergraph $H$ with respect to $\\varepsilon(H)$, $s(H)$ and $v(H)$, which extend relevant results to uniform hypergraphs.", "revisions": [ { "version": "v1", "updated": "2018-02-06T15:29:51.000Z" } ], "analyses": { "subjects": [ "15A42", "05C50" ], "keywords": [ "uniform hypergraph", "irregularity", "extend relevant results", "average degree", "spectral radius" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }