{ "id": "1802.02012", "version": "v1", "published": "2018-02-06T15:49:50.000Z", "updated": "2018-02-06T15:49:50.000Z", "title": "Strong pseudo-amenability of some Banach algebras", "authors": [ "Amir Sahami" ], "categories": [ "math.FA" ], "abstract": "In this paper we introduce a new notion of strong pseudo-amenability for Banach algebras. We study strong pseudo-amenability of some Matrix algebras. Using this tool, we characterize strong pseudo-amenability of $\\ell^{1}(S)$, provided that $S$ is a uniformly locally finite semigroup. As an application we show that for a Brandt semigroup $S=M^{0}(G,I)$, $\\ell^{1}(S)$ is strong pseudo-amenable if and only if $G$ is amenable and $I$ is finite. We give some examples to show the differences of strong pseudo-amenability and other classical notions of amenability.", "revisions": [ { "version": "v1", "updated": "2018-02-06T15:49:50.000Z" } ], "analyses": { "subjects": [ "46H05", "43A20", "20M18" ], "keywords": [ "banach algebras", "study strong pseudo-amenability", "characterize strong pseudo-amenability", "matrix algebras", "brandt semigroup" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }