{ "id": "1802.01847", "version": "v1", "published": "2018-02-06T08:59:24.000Z", "updated": "2018-02-06T08:59:24.000Z", "title": "A large deviation approach to super-critical bootstrap percolation on the random graph $G_{n,p}$", "authors": [ "Giovanni Luca Torrisi", "Michele Garetto", "Emilio Leonardi" ], "comment": "44 pages", "categories": [ "math.PR", "cs.PF" ], "abstract": "We consider the Erd\\\"{o}s--R\\'{e}nyi random graph $G_{n,p}$ and we analyze the simple irreversible epidemic process on the graph, known in the literature as bootstrap percolation. We give a quantitative version of some results by Janson et al. (2012), providing a fine asymptotic analysis of the final size $A_n^*$ of active nodes, under a suitable super-critical regime. More specifically, we establish large deviation principles for the sequence of random variables $\\{\\frac{n- A_n^*}{f(n)}\\}_{n\\geq 1}$ with explicit rate functions and allowing the scaling function $f$ to vary in the widest possible range.", "revisions": [ { "version": "v1", "updated": "2018-02-06T08:59:24.000Z" } ], "analyses": { "subjects": [ "05C80", "60K35", "60F10" ], "keywords": [ "large deviation approach", "super-critical bootstrap percolation", "random graph", "simple irreversible epidemic process", "explicit rate functions" ], "note": { "typesetting": "TeX", "pages": 44, "language": "en", "license": "arXiv", "status": "editable" } } }