{ "id": "1802.01831", "version": "v1", "published": "2018-02-06T07:41:26.000Z", "updated": "2018-02-06T07:41:26.000Z", "title": "Estimate for norm of a composition operator on the Hardy-Dirichlet space", "authors": [ "Perumal Muthukumar", "Saminathan Ponnusamy", "Hervé Queffélec" ], "comment": "12 pages, one figure; To appear in Integral Equations and Operator Theory", "categories": [ "math.FA" ], "abstract": "By using the Schur test, we give some upper and lower estimates on the norm of a composition operator on $\\mathcal{H}^2$, the space of Dirichlet series with square summable coefficients, for the inducing symbol $\\varphi(s)=c_1+c_{q}q^{-s}$ where $q\\geq 2$ is a fixed integer. We also give an estimate on the approximation numbers of such an operator.", "revisions": [ { "version": "v1", "updated": "2018-02-06T07:41:26.000Z" } ], "analyses": { "subjects": [ "47B33", "47B38", "11M36", "37C30" ], "keywords": [ "composition operator", "hardy-dirichlet space", "schur test", "lower estimates", "dirichlet series" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }