{ "id": "1802.01509", "version": "v1", "published": "2018-02-05T16:50:17.000Z", "updated": "2018-02-05T16:50:17.000Z", "title": "Anti-van der Waerden numbers on Graphs", "authors": [ "Alex Schulte", "Nathan Warnberg", "Michael Young" ], "categories": [ "math.CO" ], "abstract": "In this paper arithmetic progressions on the integers and the integers modulo n are extended to graphs. This allows for the definition of the anti-van der Waerden number of a graph. Much of the focus of this paper is on 3-term arithmetic progressions. With general results, bounds obtained using distance parameters, and determining exact values for classes of graphs, including trees and cartesian products of graphs.", "revisions": [ { "version": "v1", "updated": "2018-02-05T16:50:17.000Z" } ], "analyses": { "subjects": [ "05C35", "05C15", "05C12", "05D05" ], "keywords": [ "anti-van der waerden number", "paper arithmetic progressions", "integers modulo", "general results", "distance parameters" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }