{ "id": "1802.01473", "version": "v1", "published": "2018-02-05T15:52:27.000Z", "updated": "2018-02-05T15:52:27.000Z", "title": "A $q$-analogue of Euler's formula $ζ(2)=π^2/6$", "authors": [ "Zhi-Wei Sun" ], "comment": "5 pages", "categories": [ "math.NT", "math.CO" ], "abstract": "It is well known that $\\zeta(2)=\\pi^2/6$ as discovered by Euler. In this paper we establish the following $q$-analogue of this celebrated formula: $$\\sum_{k=0}^\\infty\\frac{q^k(1+q^{2k+1})}{(1-q^{2k+1})^2}=\\prod_{n=1}^\\infty\\frac{(1-q^{2n})^4}{(1-q^{2n-1})^4},$$ where $q$ is any complex number with $|q|<1$.", "revisions": [ { "version": "v1", "updated": "2018-02-05T15:52:27.000Z" } ], "analyses": { "subjects": [ "11B65", "05A30", "11M06", "11P84", "33D05" ], "keywords": [ "eulers formula", "complex number" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable" } } }