{ "id": "1802.01450", "version": "v1", "published": "2018-02-02T12:21:06.000Z", "updated": "2018-02-02T12:21:06.000Z", "title": "Green function for gradient perturbation of unimodal Lévy processes in the real line", "authors": [ "T. Grzywny", "T. Jakubowski", "G. Żurek" ], "comment": "arXiv admin note: text overlap with arXiv:1505.07700", "categories": [ "math.AP", "math.PR" ], "abstract": "We prove that the Green function of a generator of symmetric unimodal L\\'evy processes with the weak lower scaling order bigger than one and the Green function of its gradient perturbations are comparable for bounded $C^{1,1}$ subsets of the real line if the drift function is from an appropriate Kato class.", "revisions": [ { "version": "v1", "updated": "2018-02-02T12:21:06.000Z" } ], "analyses": { "keywords": [ "green function", "unimodal lévy processes", "gradient perturbation", "real line", "symmetric unimodal levy processes" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }