{ "id": "1802.01151", "version": "v1", "published": "2018-02-04T15:49:13.000Z", "updated": "2018-02-04T15:49:13.000Z", "title": "Uniqueness in law for stable-like processes of variable order", "authors": [ "Peng Jin" ], "comment": "26 pages", "categories": [ "math.PR" ], "abstract": "Let $d\\ge1$. Consider a stable-like operator of variable order \\begin{align*} \\mathcal{A}f(x) & =\\int_{\\mathbb{R}^{d} \\backslash\\{0\\}} \\left[f(x+h) -f(x) -\\mathbf{1}_{\\{|h|\\le1\\}}h \\cdot\\nabla f(x)\\right]\\frac{n(x,h)}{|h|^{d+\\alpha(x)}} \\mathrm{d}h, \\end{align*} where $0<\\inf_{x}\\alpha(x) \\le \\sup_{x}\\alpha(x)<2$ and $n(x,h)$ satisfies \\[ n(x,h)=n(x,-h),\\quad0<\\kappa_{1}\\le n(x,h)\\le\\kappa_{2},\\quad\\forall x,h\\in \\mathbb{R}^{d}, \\] with $\\kappa_{1}$ and $\\kappa_{2}$ being some positive constants. Under some further mild conditions on the functions $n(x,h)$ and $\\alpha(x)$, we show the uniqueness of solutions to the martingale problem for $\\mathcal{A}$.", "revisions": [ { "version": "v1", "updated": "2018-02-04T15:49:13.000Z" } ], "analyses": { "subjects": [ "60J75", "60G52" ], "keywords": [ "variable order", "stable-like processes", "uniqueness", "mild conditions", "martingale problem" ], "note": { "typesetting": "TeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable" } } }