{ "id": "1802.00708", "version": "v1", "published": "2018-02-02T14:54:22.000Z", "updated": "2018-02-02T14:54:22.000Z", "title": "Numerical methods for conservation laws with rough flux", "authors": [ "Håkon Hoel", "Kenneth Hvistendahl Karlsen", "Nils Henrik Risebro", "Erlend Briseid Storrøsten" ], "comment": "58 pages, 12 figures", "categories": [ "math.NA" ], "abstract": "Finite volume methods are proposed for computing approximate pathwise entropy/kinetic solutions to conservation laws with a rough path dependent flux function. For a convex flux, it is demonstrated that rough path oscillations may lead to \"cancellations\" in the solution. Making use of this property, we show that for $\\alpha$-H{\\\"o}lder continuous rough paths the convergence rate of the numerical methods can improve from $\\mathcal{O}(\\text{COST}^{-\\gamma})$, for some $\\gamma \\in \\left[\\alpha/(12-8\\alpha), \\alpha/(10-6\\alpha)\\right]$, with $\\alpha\\in (0, 1)$, to $\\mathcal{O}(\\text{COST}^{-\\min(1/4,\\alpha/2)})$. Numerical examples support the theoretical results.", "revisions": [ { "version": "v1", "updated": "2018-02-02T14:54:22.000Z" } ], "analyses": { "subjects": [ "35L65", "65M06", "60H15", "65C30" ], "keywords": [ "conservation laws", "numerical methods", "rough flux", "approximate pathwise entropy/kinetic solutions", "rough path dependent flux function" ], "note": { "typesetting": "TeX", "pages": 58, "language": "en", "license": "arXiv", "status": "editable" } } }