{ "id": "1802.00350", "version": "v1", "published": "2018-02-01T15:36:15.000Z", "updated": "2018-02-01T15:36:15.000Z", "title": "An $L^2$-identity and pinned distance problem", "authors": [ "Bochen Liu" ], "comment": "10 pages", "categories": [ "math.CA", "math.AP", "math.CO", "math.MG" ], "abstract": "We prove that if the Hausdorff dimension of $E\\subset\\mathbb{R}^d$, $d\\geq 2$ is greater than $\\frac{d}{2}+\\frac{1}{3}$, there exists $x\\in E$ such that the pinned distance set $$\\Delta_x(E)=\\{|y-x|: y\\in E \\}$$ has positive Lebesgue measure. This improves a result of Peres and Schlag. The key new ingredient in our proof is the following identity. Using a group action argument, we show that for any Schwartz function $f$ on $\\mathbb{R}^d$ and any $x\\in\\mathbb{R}^d$, $$\\int_0^\\infty |\\omega_t*f(x)|^2\\,t^{d-1}dt\\,=\\int_0^\\infty|\\widehat{\\omega_r}*f(x)|^2\\,r^{d-1}dr,$$ where $\\omega_r$ is the normalized surface measure on $r S^{d-1}$. An interesting remark is that the right hand side can be easily seen equals $$c_d\\int_0^\\infty\\left|D_x^{-\\frac{d-1}{2}}e^{-2\\pi i t\\sqrt{-\\Delta}}f(x)\\right|^2\\,dt=c_d'\\int_0^\\infty\\left|D_x^{-\\frac{d-2}{2}}e^{2\\pi i t\\Delta}f(x)\\right|^2\\,dt,$$ where $\\Delta$ is the standard Laplacian and $D_x^\\alpha=(-\\Delta)^{\\frac{\\alpha}{2}}$.", "revisions": [ { "version": "v1", "updated": "2018-02-01T15:36:15.000Z" } ], "analyses": { "subjects": [ "28A75", "42B20" ], "keywords": [ "pinned distance problem", "right hand side", "group action argument", "pinned distance set", "positive lebesgue measure" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }