{ "id": "1802.00109", "version": "v1", "published": "2018-02-01T00:32:28.000Z", "updated": "2018-02-01T00:32:28.000Z", "title": "Gradient estimates for nonlinear elliptic equations with a gradient-dependent nonlinearity", "authors": [ "Joshua Ching", "Florica C. Cirstea" ], "comment": "12 pages", "categories": [ "math.AP" ], "abstract": "In this paper, we obtain gradient estimates of the positive solutions to weighted $p$-Laplacian type equations with a gradient-dependent nonlinearity of the form \\begin{equation} \\label{one} {\\rm div} (|x|^{\\sigma}|\\nabla u|^{p-2} \\nabla u)= |x|^{-\\tau} u^q |\\nabla u|^m \\quad \\mbox{in } \\ \\Omega^*:= \\Omega \\setminus \\{ 0 \\}. \\end{equation} Here, $\\Omega\\subseteq \\mathbb R^N$ denotes a domain containing the origin with $N\\geq 2$, whereas $m,q\\in [0,\\infty)$, $1
\\max\\{p-m-1,\\sigma+\\tau-1\\}$. The main difficulty arises from the dependence of the right-hand side of the equation on $x$, $u$ and $|\\nabla u|$, without any upper bound restriction on the power $m$ of $|\\nabla u|$. Our proof of the gradient estimates is based on a two-step process relying on a modified version of the Bernstein's method. As a by-product, we extend the range of applicability of the Liouville-type results known for our problem.", "revisions": [ { "version": "v1", "updated": "2018-02-01T00:32:28.000Z" } ], "analyses": { "subjects": [ "35J60", "35B53" ], "keywords": [ "nonlinear elliptic equations", "gradient estimates", "gradient-dependent nonlinearity", "laplacian type equations", "main difficulty arises" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }