{ "id": "1801.10065", "version": "v1", "published": "2018-01-30T15:53:03.000Z", "updated": "2018-01-30T15:53:03.000Z", "title": "Topological generation of linear algebraic groups I", "authors": [ "Spencer Gerhardt" ], "categories": [ "math.GR" ], "abstract": "Let $C_1,...,C_e$ be noncentral conjugacy classes of the algebraic group $G=SL_n(k)$ defined over a sufficiently large field $k$, and let $\\Omega:=C_1\\times ...\\times C_e$. This paper determines necessary and sufficient conditions for the existence of a tuple $(x_1,...,x_e)\\in\\Omega$ such that $\\langle x_1,...,x_e\\rangle$ is Zariski dense in $G$. As a consequence, a new result concerning generic stabilizers in linear representations of algebraic groups is proved, and existing results on random $(r,s)$-generation of finite groups of Lie type are strengthened.", "revisions": [ { "version": "v1", "updated": "2018-01-30T15:53:03.000Z" } ], "analyses": { "subjects": [ "20G15" ], "keywords": [ "linear algebraic groups", "topological generation", "result concerning generic stabilizers", "paper determines necessary", "noncentral conjugacy classes" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }