{ "id": "1801.09928", "version": "v1", "published": "2018-01-30T10:56:05.000Z", "updated": "2018-01-30T10:56:05.000Z", "title": "Invariable generation of permutation and linear groups", "authors": [ "Gareth M. Tracey" ], "categories": [ "math.GR" ], "abstract": "A subset $\\left\\{x_{1},x_{2},\\hdots,x_{d}\\right\\}$ of a group $G$ \\emph{invariably generates} $G$ if $\\left\\{x_{1}^{g_{1}},x_{2}^{g_{2}},\\hdots,x_{d}^{g_{d}}\\right\\}$ generates $G$ for every $d$-tuple $(g_{1},g_{2}\\hdots,g_{d})\\in G^{d}$. We prove that a finite completely reducible linear group of dimension $n$ can be invariably generated by $\\left\\lfloor \\frac{3n}{2}\\right\\rfloor$ elements. We also prove tighter bounds when the field in question has order $2$ or $3$. Finally, we prove that a transitive [respectively primitive] permutation group of degree $n\\geq 2$ [resp. $n\\geq 3$] can be invariably generated by $O\\left(\\frac{n}{\\sqrt{\\log{n}}}\\right)$ [resp. $O\\left(\\frac{\\log{n}}{\\sqrt{\\log{\\log{n}}}}\\right)$] elements.", "revisions": [ { "version": "v1", "updated": "2018-01-30T10:56:05.000Z" } ], "analyses": { "keywords": [ "invariable generation", "tighter bounds", "permutation group", "reducible linear group" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }