{ "id": "1801.09806", "version": "v1", "published": "2018-01-30T00:14:47.000Z", "updated": "2018-01-30T00:14:47.000Z", "title": "A proof of Jones' conjecture", "authors": [ "Jonathan Jaquette" ], "comment": "41 pages, 5 figures, 1 table", "categories": [ "math.DS" ], "abstract": "In this paper, we prove that Wright's equation $y'(t) = - \\alpha y(t-1) \\{1 + y(t)\\}$ has a unique slowly oscillating periodic solution for parameter values $\\alpha \\in (\\tfrac{\\pi}{2}, 1.9]$, up to time translation. This result proves Jones' Conjecture formulated in 1962, that there is a unique slowly oscillating periodic orbit for all $ \\alpha > \\tfrac{\\pi}{2}$. Furthermore, there are no isolas of periodic solutions to Wright's equation; all periodic orbits arise from Hopf bifurcations.", "revisions": [ { "version": "v1", "updated": "2018-01-30T00:14:47.000Z" } ], "analyses": { "keywords": [ "conjecture", "wrights equation", "unique slowly oscillating periodic solution", "periodic orbits arise", "unique slowly oscillating periodic orbit" ], "note": { "typesetting": "TeX", "pages": 41, "language": "en", "license": "arXiv", "status": "editable" } } }